a. \(\dfrac{1}{5}\) đã tối giản
\(\dfrac{4}{120}=\dfrac{1}{30}\)
\(\dfrac{-50}{60}=\dfrac{-5}{6}\)
Quy đồng: \(BCNN\left(5,30,6\right)=30\)
\(\Rightarrow\dfrac{1}{5}=\dfrac{1.6}{5.6}=\dfrac{6}{30};\dfrac{1}{30}=\dfrac{1.1}{30.1}=\dfrac{1}{30};\dfrac{-5}{6}=\dfrac{-5.5}{6.5}=\dfrac{-25}{30}\)
b. \(\dfrac{-25}{30}< \dfrac{1}{30}< \dfrac{6}{30}\)
a,\(\dfrac{4}{120}=\dfrac{1}{30};\dfrac{-50}{60}=\dfrac{-5}{6}\)
\(\dfrac{1}{5}=\dfrac{1.6}{5.6}=\dfrac{6}{30};\dfrac{1}{30};\dfrac{-5}{6}=\dfrac{-5.5}{6.5}=\dfrac{-25}{30}\)
b, Vì \(\dfrac{6}{30}>\dfrac{1}{30}>\dfrac{-25}{30}\) nên => \(\dfrac{4}{120}>\dfrac{1}{30}>\dfrac{-50}{60}\)