\(\Delta'=3-\left(-3\right).3=3+9=12>0\)
vậy pt có 2 nghiệm pb
\(x_1=\dfrac{\sqrt{3}-2\sqrt{3}}{3}=-\dfrac{\sqrt{3}}{3}\)
\(x_2=\dfrac{\sqrt{3}+2\sqrt{3}}{3}=\sqrt{3}\)
\(\Delta'=3-\left(-3\right).3=3+9=12>0\)
vậy pt có 2 nghiệm pb
\(x_1=\dfrac{\sqrt{3}-2\sqrt{3}}{3}=-\dfrac{\sqrt{3}}{3}\)
\(x_2=\dfrac{\sqrt{3}+2\sqrt{3}}{3}=\sqrt{3}\)
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
Giải phương trình
a) \(\sqrt{2x-5}=\sqrt{x+3}\)
b) \(\sqrt{2x^2-x+4}-2=x\)
c) \(\sqrt{1-x}=\sqrt{3x+2}\)
d) \(\sqrt{2x-3}=\sqrt{x-2}\)
e) \(\sqrt{x-2}-\sqrt{3+2x}=0\)
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
Giải pt
\(\sqrt{3x+3}-\sqrt{5-2x}-x^3+3x^2+10x-26=0\)
Giải pt
\(\sqrt{3x+3}-\sqrt{5-2x}-x^3+3x^2+10x-26=0\)
\(a,\sqrt{x}-x=0\)
\(b,x-\sqrt{2x-9}=6\)
\(c,3x-\sqrt{6x-\left(3-2\right)}=0\)
giải pt
1) \(\sqrt{x+3}+\sqrt{3x+1}+4\sqrt{5-x}=12\)
2) \(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
3) \(4x\sqrt{x+3}+2\sqrt{2x-1}=4x^2+3x+3\)
4) \(x^4-x^2+3x+5-2\sqrt{x+2}=0\)
Giải hệ phương trình:
\(1.\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(2.\hept{\begin{cases}2x^3+2z^2+3z+3=0\\2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\end{cases}}\)
Giải các phương trình:
\(a,2x^2+1+\sqrt{8x^3+1}=0\)
\(2x+9+\sqrt{4x^2+36x+17}=\frac{8}{x}\)
\(c,\sqrt[3]{2x-1}-\sqrt{2x}=\sqrt[3]{x^3+1}-x\)
\(d,\sqrt{3x+1}-+\sqrt{6-x}+3x^2-14x-8=0\)
\(e,2\sqrt{\frac{x^2+x+1}{x+4}}+x^2-4=\frac{2}{\sqrt{x^2+1}}\)