Đề bài: Tìm x
\(3.2^{x+1}+\frac{1}{2}=\frac{49}{2}\)
\(3.2^{x+1}=\frac{49}{2}-\frac{1}{2}\)
\(3.2^{x+1}=24\)
\(2^{x+1}=24\div3\)
\(2^{x+1}=8\)
\(2^{x+1}=2^3\)
\(\Rightarrow x+1=3\)
\(x=2\)
Vậy \(x=2.\)
\(3.2^{2x+1}+\frac{1}{2}=\frac{49}{2}\)
\(\Leftrightarrow3.2^{2x+1}=\frac{48}{2}\)
\(\Leftrightarrow2^{2x+1}=8\)
\(\Leftrightarrow2^{2x+1}=2^3\)
\(\Rightarrow2x+1=3\)
\(\Rightarrow x=1\)