a) |x+1|+|x+5|=4
\(\Rightarrow x+1+x+5=\pm4\)
\(x+1+x+5=4\)
\(\Rightarrow x^2+1+5=4\)
\(x^2+6=4\)
\(x^2=4-6\)
\(\Rightarrow x^2=-2\)
\(x+1+x+5=-4\)
\(x^2+6=-4\)
\(x^2=-8\)
a) trường hợp 1:x\(\ge\)-1
x+1+x+5=4\(\Rightarrow2x+6=4\Rightarrow x=-1\)(TM)
TH2:\(-5\le x< -1\)
-x-1+x+5=4(phương trình vô nghiệm)
TH3:x<-5
-x-1-x-5=4\(\Rightarrow-2x-6=4\Rightarrow-5\)(KTM)
vậy x=-1
b)
b: Ta có: \(\left|2x-1\right|\ge0\forall x\)
\(\left|x-3y\right|\ge0\forall x,y\)
Do đó: \(\left|2x-1\right|+\left|x-3y\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(\dfrac{1}{2};\dfrac{1}{6}\right)\)