\(\left(3-\dfrac{3}{4}\right)\times\left(3-\dfrac{3}{3}\right)\times\left(3-\dfrac{3}{2}\right)\times\left(3-\dfrac{3}{1}\right)+2019\)
=\(\left(3-\dfrac{3}{4}\right)\times\left(3-\dfrac{3}{3}\right)\times\left(3-\dfrac{3}{2}\right)\times0+2019\)
=\(0+2019\)
=2019
Ta có: \(\left(3-\dfrac{3}{4}\right)\left(3-\dfrac{3}{3}\right)\left(3-\dfrac{3}{2}\right)\left(3-\dfrac{3}{1}\right)+2019\)
\(=\dfrac{6}{4}\cdot2\cdot\dfrac{3}{2}\cdot0+2019\)
=2019