a/ (√10+√2) (6-2√5)√(3+√5)
b/ √(13-√160) - √(53-4√90)
c/ √(10+√24+√40+√60)
d/ (√2+√3+√6+√8+√16)/(√2+√3+√4)
e/ [√216/3-(2√3-√6)/(√8-2)] ×1/√6
f/ 1/(√2-√3) × √[(3√2-2√3)/(3√2+2√3)]
g/ 1/(√1+√2) + 1/(√2+√3) + ......+ 1/(√2017+√2018)
Tìm số thực xx, biết:
a) 3√x<2x3<2 :
b) 3√2x−1>−3:2x−13>−3:
c) 3√2−3x≤1:2−3x3≤1:
d) 3√3−4x≥53−4x3≥5.
rút gọn biểu thức :
A= \(\dfrac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\).
B= \(\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\).
C= \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\).
Chứng minh: 1 3 + 2 3 = 1 + 2
Viết tiếp một số đẳng thức tương tự.
1 3 + 2 3 + 3 3 = 1 + 2 + 3 1 3 + 2 3 + 3 3 + 4 3 = 1 + 2 + 3 + 4
Rút gọn các biểu thức sau:
a \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
b \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
c \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
d \(\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
\(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
Giải các phương trình sau:
1) 2 1 5 x 2) 2 1 5 x x
3) 3 1 2 x x 4) 3 2 2 x x
5) 2 1 5 x x 6) 3 2 x x
7) 2 3 2 1 x x 8) 2 1 4 1 0 x x 2
9) 2 5 4 3 1 1 2
3 2 3 1
x x
x x x x
10) 1 7 3 2
3 3 9
x x x
x x x
11) 5 296 2 1 3 1
16 4 4
x x
x x x
12)
2 4
1
2 1 2 1 2 1 2 1
x x
x x x x
13) 2 1 2 2
2 2
x
x x x x
14) 22 4
2 6 2 2 2 3
Cho . Chứng minh là số nguyên
Thực hiện phép tính
a) \(\left(2-\sqrt{3}\right)^2-\sqrt{4-2\sqrt{3}}+\sqrt{12}\)
b)\(\frac{2\sqrt{12}-\sqrt{6}}{2\sqrt{6}-\sqrt{3}}+\frac{10+\sqrt{5}}{2\sqrt{15}+\sqrt{3}}\)
c)\(\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right):\left(\sqrt{2}+\sqrt{3}\right)\)
d)\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
e)\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)
f)\(\sqrt{28-16\sqrt{3}}+\sqrt{73-40\sqrt{3}}\)