2x(x - 5) - (3 + 2x) = 26
2x² - 10x - 3 - 2x - 26 = 0
2x² - 12x - 29 = 0
2x² - 2.2.x.3 + 2.9 - 29 - 2.9 = 0
2(x² - 2.x.3 + 9) - 47 = 0
2(x - 3)² = 47
*)
*)
Vậy:
$#flo$
`2x(x-5) - (3+2x) = 26`
`=>2x^2 - 10x -3 -2x = 26`
`=> 2x^2 -12x - 3 =26`
`=> 2x^2 - 12x -3 - 26 = 0`
`=>2x^2 - 12x - 29 = 0`
`=> 2(x^2 - 6x - 29/2) = 0`
`=> x^2 - 6x - 29/2 = 0`
`=> x^2 -2x.3 + 9 - 47/2 = 0`
`=> (x-3)^2 -47/2 = 0`
`=>(x-3)^2 = 47/2`
TH1:
\(x-3=\dfrac{\sqrt{94}}{2}\)
`=> x` = \(\dfrac{\sqrt{94}}{2}+3\)
TH2:
`x-3 = ` \(\dfrac{-\sqrt{94}}{2}\)
`=> x = \(\dfrac{-\sqrt{94}}{2}+3\)
`2) (2x-3)^2 - (x+5)^2 = 0`
`=> (2x-3-x-5)(2x-3+x+5) = 0`
`=> (x-8)(3x+2)=0`
\(\Rightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
(2x - 3)² - (x + 5)² = 0
(2x - 3 - x - 5)(2x - 3 + x + 5) = 0
(x - 8)(3x - 2) = 0
x - 8 = 0 hoặc 3x - 2 = 0
*) x - 8 = 0
x = 8
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy S = {2/3; 8}