`(|2x-4|)/3=6/8`
`=>|2x-4|:3=6/8`
`=>|2x-4|=6/8 . 3`
`=>|2x-4|=9/4`
`@` TH1 :
`2x-4=9/4`
`=>2x=9/4+4`
`=>2x=9/4+16/4`
`=>2x=25/4`
`=>x=25/4:2`
`=>x=25/4 . 1/2`
`=>x=25/28`
`@` TH2 :
`2x-4=-9/4`
`=>2x=-9/4+4`
`=>2x=-9/4+16/4`
`=>2x=7/4`
`=>x=7/4 : 2`
`=>x=7/4 . 1/2`
`=>x=7/8`
Vậy `x in{25/8;7/8}`
\(\dfrac{\left|2x-4\right|}{3}=\dfrac{6}{8}\)
\(\Leftrightarrow\dfrac{\left|2x-4\right|}{3}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left|2x-4\right|=3.3\)
\(\Leftrightarrow4\left|2x-4\right|=9\)
\(\Leftrightarrow\left|2x-4\right|=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=\dfrac{9}{4}\\2x-4=-\dfrac{9}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{9}{4}+4\\2x=-\dfrac{9}{4}+4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{25}{4}\\2x=\dfrac{7}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{25}{8}\\x=\dfrac{7}{8}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{7}{8};\dfrac{25}{8}\right\}\)