`(2x-3)(3x-1)=-3(3x-1)`
`<=>(2x-3)(3x-1)+3(3x-1)=0`
`<=>(3x-1)(2x-3+3)=0`
`<=>(3x-1)*2x=0`
\(< =>\left[{}\begin{matrix}3x-1=0\\2x=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=0\end{matrix}\right.\)
(2x - 3)(3x - 1) = -3(3x - 1)
(2x - 3)(3x - 1) + 3(3x - 1) = 0
(3x - 1)(2x - 3 + 3) = 0
3x - 1 = 0 hoặc 2x = 0
*) 3x - 1 = 0
3x = 1
x = 1/3
*) 2x = 0
x = 0
Vậy S = {0; 1/3}