Giải hệ phương trình: \(\hept{\begin{cases}3\sqrt{x+2y-2}+\sqrt{y-2x}=5\\2\sqrt{y-2x}-5y-10x-4=0\end{cases}}\)
Hệ phương trình 3 \(9x^2-12xy+4y^2-30x+28y=0\)\(x^2+5y^2+2y-4xy-3=0\)
\(y^3-x^2=2\)
Hệ phương trình 4\(x^2-3xy+2y^2+2x-2y=0\)
\(x^2-2xy+y^2-10x+14=0\)
Hệ phương trình 5\(9x^2-18xy+8y^2+6x-4y=\)0
1. Giải phương trình:
1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)
3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)
4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
5/ \(x^2-\left(m+1\right)x+2m-6=0\)
6/ \(615+x^2=2^y\)
2.
a, Cho các số dương a,b thoả mãn \(a+b=2ab\).
Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).
b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).
Tính GTNN và GTLN của biểu thức \(P=x+y\).
3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).
4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).
giải hệ phương trinh
\(4x^2y^2-10x^2y+8x^2-10x+4=0\)
\(x-2y=\sqrt{3y}-\sqrt{x+y}\)
\(\hept{\begin{cases}x^2+y^2-10x=0\\x^2+y^2-4x-2y=20\end{cases}}\)
tìm min của x/y biết x^2-10x+y^2-2y+1=0
giúp mình nha mình kick cho. thank!!!!!!!
Tìm cặp số nguyên \(\left(x;y\right)\) thỏa mãn phương trình: \(5x^4+10x^2+2y^6+4y^3-6=0\)
Giải hệ phương trình \(\hept{\begin{cases}\frac{3+2x-y}{2x-y}-\frac{6}{x+y}=0\\\frac{1-4x+2y}{2x-y}-\frac{1+2x+2y}{x+y}=0\end{cases}}\)
\(\hept{\begin{cases}2x^2-y^2-7x+2y+6=0\\-7x^3+12x^2y-6xy^2+y^3-2x+2y=0\end{cases}}\)