`2024 - (2023 - 2022)^2023 + (2023 + 1)^0`
`= 2024 - 1^2023 + 2024^0`
`=2024 - 1 + 1`
`= 2023 + 1`
`= 2024`
\(2024-\left(2023-2022\right)^{2023}+\left(2023+1\right)^0\\ =2024-1^{2023}+2024^0\\ =2024-1+1\\ =2024-\left(1-1\right)\\ =2024-0\\ =2024\)
2024-12023+20240
=2024 - 1 + 1
=2024