Ta có :
\(2020-2019+2018-2017+...+2-1\)
\(=\left(2020-2019\right)+\left(2018-2017\right)+...+\left(2-1\right)\)
\(=1+1+...+1\)
Tổng số trên có số số hạng là
\(\left[\left(2020-1\right)\div1+1\right]\div2=1010\)
Từ đó ta được :
\(1+1+...+1\)
\(=1\times1010\)
\(=1010\)
\(2020-2019+2018-2017+..+2-1\)
\(=\left(2020-2019\right)+\left(2018-2017\right)+\left(2016-2015\right)+...+\left(2-1\right)\)
\(=1+1+1+1+...+1\)
Số lượng số hạng là:
\(\left(2020-1\right):1+1=2020\) (số hạng)
Số lượng cặp là:
\(2020:2=1010\) (cặp)
Vậy có 1010 số 1
\(\Rightarrow1\cdot1010=1010\)