a: Xét (O) có
MC là tiếp tuyến
MA là tiếp tuyến
Do đó: MC=MA
Xét (O) có
DC là tiếp tuyến
DB là tiếp tuyến
Do đó: DC=DB
Ta có: CM+DC=DM
nên MD=MA+BD
a: Xét (O) có
MC là tiếp tuyến
MA là tiếp tuyến
Do đó: MC=MA
Xét (O) có
DC là tiếp tuyến
DB là tiếp tuyến
Do đó: DC=DB
Ta có: CM+DC=DM
nên MD=MA+BD
Cho nửa đường tròn (O;R) đường kính AB. Vẽ hai tiếp tuyến Ax và By cùng phía với nửa đường tròn. Trên Ax lấy M sao cho AM>R. Từ M kẻ tiếp tuyến MC với nửa đường tròn đó ( C là tiếp điểm). MC cắt By tại D, tia AC cắt By tại K.
Cm:\(OK\perp BM\)
Cho nửa đường tròn (O) đường kính AB, kẻ 2 tiếp tuyến Ax, By cùng phía với nửa
đường tròn. Lấy C bất kỳ thuộc nửa đường tròn. Đường trung trực của AC cắt Ax tại M.
1. Chứng minh: MC là tiếp tuyến của (O).
2. Kẻ đường thẳng vuông góc với MO tại O, đường thẳng này cắt tia By tại N.
Chứng minh: C, N, M thẳng hàng.
Yêu cầu nho nhỏ *Cần Gấp* mong sẽ có người trả lời ^^
Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.
Tính tỉ số S M O N S A P B k h i A M = R 2
Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiêp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP với đường tròn tâm O (tiếp điểm P khác điểm A) cắt By tại N
a, Chứng minh các tam giác MON và APB đồng dạng
b, Chứng minh AM.BN = R 2
c, Tính tỉ số S M O N S A P B khi AM = R 2
d, Tính thể tích của hình do nửa hình tròn đường kính AB quay một vòng quanh AB sinh ra
Cho nửa đường tròn (O) đường kính AB, trên nửa mặt phẳng bờ AB chứa nửa đường tròn đó, kẻ hai tia tiếp tuyến Ax, By với (O). Gọi (I) là đường tròn tiếp xúc với Ax tại C và tiếp xúc ngoài với nửa đường tròn (O) tại F. Kẻ tiếp tuyến CE với (O) (E là tiếp điểm, E khác A), AE cắt tia By tại D. Cho AB = 2R.
a) Tính AC.BD theo R. Chứng minh CE^2 = CF.CB.
b) Đường thẳng vuông góc với By tại D cắt OE tại J, CE cắt DF tại G. Chứng minh:
- DF là tiếp tuyến của (O).
- G là tâm của đường tròn nội tiếp tam giác OIJ
Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.
Chứng minh rằng MON và APB là hai tam giác vuông đồng dạng.
cho nửa đường tròn tâm O đường kính AB=2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm ).AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a, chứng minh AMDE nội tiếp đường tròn.
b, MA^2=MD.MB
Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.
a) Chứng minh rằng MON và APB là hai tam giác vuông đồng dạng.
b) Chứng minh AM ⋅ BN = R 2
c) Tính tỉ số S M O N S ∆ D B khi A M = R 2
d) Tính thể tích của hình do nửa hình tròn APB quay quanh AB sinh ra.
cho nửa đường tròn (O;R) đường kính ab vẽ tiếp tuyến ax trên cung ab lấy điểm c (c khác a;b) trên tia ax lấy điểm m saon cho ma=mc nối m vói o
chứng minh đường thẳng mc là tiếp tuyến của đường tròn (O;R)