cho hình thang cân ABCD có đáy là AB,CD .Kẻ AH vuông góc với DC tại H ,BK vuông góc với DC tại K
a)Cm:DH=Ck
b)Cm:tam giác AHC=tam giác BKD
c)Đường thẳng DA,Bc cắt nhau tại M.Chứng minh tam giác MAC=tam giác MBD
d)Gọi AC giao BD tại O I là trung điểm Dc ,Cm chưng minh M,O,I thẳng hàng
Bài 1: Cho hình thang ABCD(AB//CD). Tia phân giác của góc A và góc D cắt nhau tại I, của góc B và góc C cắt nhau tại k. Gọi M,N lần lượt là trung điểm của AD và BC. Cm: 4 điểm M,N,I,K thẳng hàng
Bài 2: Cho hình thang cân ABCD, đáy nhỏ AB. Vẽ AH vuông góc CD. CMR: DH=CD-AB/2
NHANH NHA MÌNH CẦN GẤP LẮM
cho hình thang ABCD có góc A=góc B=90 độ và BC=AB=AD/2. Lấy M thuộc đáy nhỏ BC kẻ Mx vuông góc với MA, Mx cắt DC tại N. Chứng minh rằng: Tam giác AMN vuông cân
Cho ABCD là hình thang cân ( do AB//CD ) Hạ AH vuông góc với CD tại H. Hạ BK vuông góc với CD tại K: a) CM: DH=CK. b) CMR: DK=HC. c) so sánh AK và DH
Cho hình thang ABCD có góc A=góc b = 900 và BC=AB=AD/2. Lấy M thuộc đáy nhỏ BC. Kẻ Mx vuông góc với MA, Mx cắt CD tại N. CMR: tam giác AMN vuông cân
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho hình thang cân ABCD(AB song song với CD, AB<CD).Kéo dài DC về 2 phía sao cho: DE=CF.Kẻ DK vuông góc AE và CQ vuông góc với BF.
a)CMR : ABFE là hình thang cân
b)CMR:DK=CQ
c)CMR:KQCD và ABQK là hình thang cân
d) AQ cắt BK tại H, AC cắt DB tại I và KC cắt DQ tại V
CMR: H,I,V thẳng hàng
Cho hình thang cân ABCD ( AB//CD , AB < DC ) . Kẻ AH vuông góc vs AB cắt DB tại h . Kẻ BK vuông góc với AB và cắt AC tại K
a) Tứ giác AHKB là hình gì . tại sao
b) gọi E là trung điểm cua AB , F là trung điểm của DC . gọi i là giao diểm của AC và BD , g là giao điểm của ch và dk . cm : ei , g , f thẳng hàng
Cho hình thang có góc A= góc B = 90 độ và BC= AB = 1/2 AD. Lấy điểm M thuộc đáy nhỏ BC. Kẻ Mx vuông góc MA, Mx cắt CD tại N. CMR tam giác AMN vuông cân .
Tứ giác ABCD là hình thang cân, có O là giao 2 đường chéo. H là trung điểm đáy nhỏ AB. Từ B kẻ BE //AD. Từ A kẻ AF//BC(E,F thuộc DC). Gọi I là giao của AE và BF qua I kẻ IK vuông góc DC tại K. CMR:a, ABEF là hình thang cân b,4 điểm H,D,I,K cùng nằm trên 1 đường thẳng.