Câu 1. Cho hình chóp S ABC . có SA vuông góc với ABC và đáy ABC đều cạnh a. Biết SA=3a/2.Gọi H là trung điểm của BC.
a. Tính góc giữa hai mặt phẳng SBC và ABC ?
b. Tính diện tích của tam giác ABC từ đó suy ra diện tích tam giác SBC ?
c. Chứng minh SBC vuông góc với SAH
Câu 2. Cho hình chóp tam giác đều S ABC . có cạnh đáy bằng a và đường cao SH bằng cạnh đáy. Tính số đo góc hợp bởi mặt bên và mặt đáy
cho hình chóp S.ABC có đáy là tam giác ABC vuông tai B; SA = AB = BC = a và SA vuông góc (ABC). Chứng minh rằng:
a) BC vuông góc (SAB)
b) BC vuông góc SA
c) tìm góc giữa AC và (SBC)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B , SA(ABC) . Kẻ AH , AK lần lượt vuông góc với SB , SC tại H và K , có SA = AB = a .
1) Chứng minh tam giác SBC vuông .
2) Chứng minh tam giác AHK vuông và tính diện tích tam giác AHK .
3) Tính góc giữa AK và (SBC) .
Cho hình chóp S.ABC SA vuông góc với đáy ABC, SA=2a
Xđịnh góc giữa 2 mp (SBC) và ( ABC) .
Biết tam giác ABC vuông tại B, cạnh AB=a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C ; SA vuông góc với đáy; SC = a. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC). Tính để thể tích khối chóp S.ABC lớn nhất
Cho hình chóp S.ABC có đáy ABC là tam giác đều, I là trung điểm của BC, SA vuông góc với (ABC). Gọi H, O lần lượt là trực tâm của tam giác SBC, ABC, K là giao điểm của hai đường thẳng SA và OH. Chứng minh rằng:
a) OH vuông góc với (SBC)
b) SO vuông góc với IK.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông (ABC) SA= a cân 3; AB=a
A: Chứng minh (SAB) vuông (SAC)
B: Gọi M là trung điểm của BC, chứng minh BC vuông góc vs SM
C: Tính góc giữa SC và (ABC
Cho hình chóp S.ABC có SA vuông góc với (ABC), tam giác ABC là tam giác vuông cân tại A, AB = 2a, góc giữa (SBC) và mặt đáy bằng 60 0 . Thể tích khối chóp S.ABC là:
A . 125 2 a 3 6
B . 3 6 a 3 4
C . 16 2 a 3 3
D . 2 6 a 3 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy.
a) Chứng minh tam giác SBC vuông
b) Gọi H là chân đường cao vẽ từ B của tam giác ABC.
Chứng minh (SAC) ⊥ (SBH)
c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC)
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Tính số đo của góc giữa SA và (ABC)
A. 300
B. 450
C. 600
D. 900