Bạn nên viết đề bằng công thức toán (biểu tượng ∑ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Bạn nên viết đề bằng công thức toán (biểu tượng ∑ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
\(\frac{\left(x^2+x+1\right)\sqrt{x^2-x+1}+\left(x^2-x+1\right)\sqrt{x^2+x+1}}{\sqrt{x^2+x^2+1}}\div\frac{1}{\sqrt{x^2+1+x}-\sqrt{x^2-x+1}}\)
Giải các phương trình sau:
1) 2 1 5 x 2) 2 1 5 x x
3) 3 1 2 x x 4) 3 2 2 x x
5) 2 1 5 x x 6) 3 2 x x
7) 2 3 2 1 x x 8) 2 1 4 1 0 x x 2
9) 2 5 4 3 1 1 2
3 2 3 1
x x
x x x x
10) 1 7 3 2
3 3 9
x x x
x x x
11) 5 296 2 1 3 1
16 4 4
x x
x x x
12)
2 4
1
2 1 2 1 2 1 2 1
x x
x x x x
13) 2 1 2 2
2 2
x
x x x x
14) 22 4
2 6 2 2 2 3
rút gọn biểu thức chứa căn thức bậc hai
√x/√x-1 - 6/√x-1 - 2√3/√x-1 (x>=0,xkhasc1 )
3-√x/√x-2 - 1-√x/√x-2 - -5√x/√x -2
2-6√x/√x-4 - 1-√x/√x-4 - 3-√x/√x-4
\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\) ĐKXĐ: ...
\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)
\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)
\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)
Rút gọn:
1) \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
2)\(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
3) \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
4) \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
Mng giúp e vs ạ, cần gấp :<
Rút gọn các biểu thức sau:
1.\(\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
2.\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
Rút gọn các biểu thức sau:
1.\(\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
2.\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
Rút gọn:
\(A=\frac{\left(x^2+x+1\right)\sqrt{x^2-x+1}+\left(x^2-x+1\right)\sqrt{x^2+x+1}}{\sqrt{x^4+x^2+1}}:\frac{1}{\sqrt{x^2+x+1}-\sqrt{x^2-x+1}}\)
\(=\frac{x+1}{2\left(x-1\right)}+\frac{2}{2\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\)
=\(\frac{\left(x+1\right).\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
=\(\frac{x\sqrt{x}+\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2x-2\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2x+2\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
=\(\frac{x\sqrt{x}+4x+\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}\left(x+4\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
LƯU Ý: CAP NÀY CHỈ LÀ CAP NHÁP
Rút gọn các biểu thức sau:
\(B=\frac{\sqrt{1+\sqrt{1-x^2}}[\left(1+x\right)\sqrt{1+x}-\left(1-x\right)\sqrt{1-x}]}{x\left(2+\sqrt{1-x^2}\right)}\)
\(N=\left(\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}\frac{1-x}{\sqrt{1-x^2}-1+x}\right).\left(\sqrt{\frac{1}{x^2}-1}-\frac{1-x}{x}\right).\frac{x}{1-x+\sqrt{1-x^2}}\)với -1<x<0