\(3x^2+\sqrt{2}x-3+\sqrt{2}=0\)
Ta có \(a-b+c=3-\sqrt{2}-3+\sqrt{2}=0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=-1\)
\(x_2=-\dfrac{-3+\sqrt{2}}{3}=\dfrac{3-\sqrt{2}}{3}\)
\(3x^2+\sqrt{2}x-3+\sqrt{2}=0\)
Ta có \(a-b+c=3-\sqrt{2}-3+\sqrt{2}=0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=-1\)
\(x_2=-\dfrac{-3+\sqrt{2}}{3}=\dfrac{3-\sqrt{2}}{3}\)
(5) giải pt:
\(\sqrt{3x+1}+\sqrt{2-x}-3=0\)
Giải PT sau: \(\sqrt{3x^2}\) \(-\) \(\left(1-\sqrt{3}\right)\)x \(-\) 1 = 0
giải pt: \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
giải pt :\(x^3-3\sqrt{2}x^2+3x+\sqrt{2}=0\)
giải pt
1) \(\sqrt{x+3}+\sqrt{3x+1}+4\sqrt{5-x}=12\)
2) \(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
3) \(4x\sqrt{x+3}+2\sqrt{2x-1}=4x^2+3x+3\)
4) \(x^4-x^2+3x+5-2\sqrt{x+2}=0\)
Cho pt x2 - 3x + m = 0 (1)
a) giải pt với m= 2
b) Tìm m để pt(1) có 2 nghiệm phân biệt x1, x2 thỏa mãn : \(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)
Giúp e giải pt:
2x-3+\(\frac{3x-1}{\sqrt{3-2x^2}+2-x}=0\)
\(^{x^2+4x+1=\left(x+4\right)\sqrt{x^2+1}}\)
\(2\left(x-2\right)\sqrt{x-1}=3x^2+5x-4-4x\sqrt{2x-1}\)
giải pt
\(3x^3-17x^2-8x+9+\sqrt{3x-2}-\sqrt{7-x}=0 \)
Giải pt: \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)