`(-4)^(3x + 1) = 1/16`
`=> (-4)^(3x + 1) = (-4)^(-2)`
`=> 3x +1 = -2`
`=> 3x = -2-1`
`=> 3x = -3`
=> x = -3:3`
`=>x=-1`
Vậy: `x=-1`
`(3/4)^(2x-1) = (3/4)^(5x - 4)`
`=>2x-1=5x-4`
`=>2x - 5x=-4+1`
`=> -3x =-3`
`=> x = -3:(-3)`
`=>x=1`
Vậy: `x=1`
\(\left(-4\right)^{3x+1}=\dfrac{1}{16}\)
\(\left(-4\right)^{3x+1}=\left(-4\right)^{-2}\)
\(3x+1=-2\)
\(3x=-2-1\)
\(3x=-3\)
\(x=-3:3\)
\(x=-1\)
\(----------\)
\(\left(\dfrac{3}{4}\right)^{2x-1}=\left(\dfrac{3}{4}\right)^{5x-4}\)
\(2x-1=5x-4\)
\(2x-5x=-4+1\)
\(-3x=-3\)
\(x=\left(-3\right):\left(-3\right)\)
\(x=1\)
`3(2x-1)^3 - 4 = 20`
`=> 3(2x-1)^3 = 20+4`
`=> 3(2x-1)^3=24`
`=> (2x-1)^3 = 24:3`
`=> (2x-1)^3=8`
`=> (2x-1)^3=2^3`
`=>2x-1=2`
`=>2x=3`
`=> x=3/2`
Vậy: `x=3/2`
`16x^2 = (x+1)^2`
`=> (4x)^2 - (x+1)^2 = 0`
`=> (4x -x - 1)(4x + x + 1) = 0`
`=> (3x - 1)(5x + 1)=0`
`=> [(3x-1=0),(5x+1=0):}`
`=> [(3x=1),(5x=-1):}`
`=> [(x=1/3),(x=-1/5):}`
Vậy: `x=1/3;x=-1/5`