\(1+3+3^2+...+3^{99}+3^{100}\)
\(=\left(1+3+3^2\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=13\times3^3\left(1+3+3^2\right)+...+3^{98}\times\left(1+3+3^2\right)\)
\(=13+3^3\times13+...+3^{98}\times13\)
\(=13\times\left(1+3^3+...+3^{98}\right)⋮13\)
1+3+32+...+399+3100
=(1+3+32)+...+(398+399+3100)=(1+3+32)+...+(398+399+3100)
=13×33(1+3+32)+...+398×(1+3+32)
=13+33×13+...+398×13
=13×(1+33+...+398)⋮13