Do \(\left|\dfrac{1}{3}+2024x\right|+\left|\dfrac{2}{3}+2025x\right|\ge0;\forall x\)
\(\Rightarrow4050x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{3}+2024x>0\\\dfrac{2}{3}+2025x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|\dfrac{1}{3}+2024x\right|=\dfrac{1}{3}+2024x\\\left|\dfrac{2}{3}+2025x\right|=\dfrac{2}{3}+2025x\end{matrix}\right.\)
Phương trình trở thành:
\(\dfrac{1}{3}+2024x+\dfrac{2}{3}+2025x=4050x\)
\(\Leftrightarrow1+4049x=4050x\)
\(\Leftrightarrow1=4050x-4049\)
\(\Leftrightarrow x=1\) (thỏa mãn)