\(A=1^2+3^2+5^2+...+99^2\)
=>\(A=\left(1^2+2^2+...+99^2+100^2\right)-\left(2^2+4^2+...+100^2\right)\)
\(=\left(1^2+2^2+...+100^2\right)-4\left(1^2+2^2+...+50^2\right)\)
\(=\dfrac{100\cdot\left(100+1\right)\left(100\cdot2+1\right)}{6}-4\cdot\dfrac{50\cdot\left(50+1\right)\left(50\cdot2+1\right)}{6}\)
\(=166650\)