\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{2023\times2024}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\\ =1-\dfrac{1}{2024}=\dfrac{2023}{2024}\)
1/1*2+1/2*3+...+1/2023*2024=1-1/2+1/2-1/3+...+1/2023-1/2024
=1-1/2024=2023/2024
\(...=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)
\(=1-\dfrac{1}{2024}=\dfrac{2023}{2024}\)
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{2023\times2024}\)
=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)
=\(1-\dfrac{1}{2024}\)
=\(\dfrac{2023}{2024}\)
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2023-1/2024
=1/1-1/2024
=2024/2024-1/2024
=2023/2024