\(a.10x-25-x^2=-\left(x-5\right)^2\\ b.\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\\ =2a.\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a.\left(a^2+3b^2\right)\)
Ta có 10x-25-x^2
=-(x^2-10x+5^2)
=-(x-5)^2
Ta có (a+b)^3+(a-b)^3
=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3
=2a^3+6ab^2-b^3
\(10x-25-x^2=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)
\(\left(a+b\right)^3+\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3=2a^3+6ab^2\)