Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Thanh Tịnh

1) Tìm x biết : a) \(a^2x+x=2a^2-3\) ; b) \(a^2x+3ax+9=a^2\left(a\ne0;a\ne-3\right)\)

2) Cho a + b + c = 3,rút gọn biểu thức \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)

3) Chứng minh rằng nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1;x=y+z\)thì \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)

Cô Hoàng Huyền
16 tháng 7 2017 lúc 10:58

b. Sử dụng các hằng đẳng thức

 \(a^3+b^3+c^2-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)

và \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

nên \(A=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{1}{2}.\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Do (a - b) + (b - c) + (c - a) =  0 nên áp dụng hđt  \(X^2+Y^2+Z^2=-2\left(XY+YZ+ZX\right)\)khi X + Y + Z = 0, ta có:

\(A=-2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)

Thùy Ninh
16 tháng 7 2017 lúc 6:43

Bài 1 :

\(b,ax^2+3ax+9=a^2\) 

\(\Leftrightarrow a^2x+3ax+9-a^2=0\) 

\(\Leftrightarrow ax\left(a+3\right)+\left(a+3\right)\left(3-a\right)=0\) 

\(\Leftrightarrow\left(a+3\right)\left(ax+3-a\right)=0\)

Vì \(a\ne3\Rightarrow\left(a+3\right)\ne0\Rightarrow ax+3-a=0\) 

\(\Leftrightarrow ax=a-3\) 

Vì \(a\ne0\Rightarrow x=\frac{a-3}{a}\) 

Cô Hoàng Huyền
16 tháng 7 2017 lúc 10:28

c.Ta có \(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xz}-\frac{2}{xy}+\frac{2}{yz}=1\)

Do x = y + z nên \(\frac{-2}{xz}-\frac{2}{xy}+\frac{2}{yz}=\frac{-2y-2z+2\left(y+z\right)}{\left(y+z\right)zy}=0\)

Vậy nên \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1.\)

Cô Hoàng Huyền
16 tháng 7 2017 lúc 11:00

Cô sửa KL \(a=-\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=\frac{1}{b-a}+\frac{1}{c-b}+\frac{1}{a-c}\)


Các câu hỏi tương tự
Cáo Nô
Xem chi tiết
Vũ Mai Anh
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
lily
Xem chi tiết
Cô nàng Thiên Yết
Xem chi tiết
no name
Xem chi tiết
Momozono Nanami
Xem chi tiết
Lê Huyền Trang
Xem chi tiết
Lê Phương Uyên
Xem chi tiết