2: Ta có: \(B=x^2+\frac{1}{x^2}\)
\(=x^2-2\cdot x\cdot\frac{1}{x}+\frac{1}{x^2}+2\)
\(=\left(x-\frac{1}{x}\right)^2+2\)
Ta có: \(\left(x-\frac{1}{x}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{x}\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi
\(\left(x-\frac{1}{x}\right)^2=0\Leftrightarrow x-\frac{1}{x}=0\Leftrightarrow x=\frac{1}{x}\)\(\Leftrightarrow x=\pm1\)
Vậy: GTNN của đa thức \(B=x^2+\frac{1}{x^2}\) là 2 khi \(x=\pm1\)
\(A=\left(2n-5\right)\left(2n+5\right)\)
A là SNT khi và chỉ khi \(2n-5=1\) và \(2n+5\) là SNT
\(2n-5=1\Rightarrow n=3\)
\(\Rightarrow2n+5=11\) (thỏa mãn)
Vậy \(n=3\)