Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(P=\frac{x^2}{\frac{1}{5}}+\frac{y^2}{1}\ge\frac{\left(x+y\right)^2}{\frac{1}{5}+1}=\frac{5}{6}\)
Dấu "=" xảy ra khi \(\frac{x}{\frac{1}{5}}=\frac{y}{1}\Leftrightarrow5x=y\Rightarrow x=\frac{1}{6}\Rightarrow y=\frac{5}{6}\)
Vậy ...
\(x+y=1\Rightarrow y=1-x\)
\(P=5x^2+\left(1-x\right)^2=6x^2-2x+1=6\left(x-\frac{1}{6}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
\(P_{min}=\frac{5}{6}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{6}\\y=\frac{5}{6}\end{matrix}\right.\)