1 M=\(x^2-4xy+4y^2-2x+4y+10\)
=\(\left(x^2-4xy+4y^2\right)+\left(-2x+4y\right)+10\)
\(=\left(x-2y\right)^2-2\left(x-2y\right)+10\)
\(=\left(x-2y\right)\left(x-2y-2\right)+10\)
vì \(\left(x-2y\right)\left(x-2y-2\right)\ge0\)
nên \(\left(x-2y\right)\left(x-2y-2\right)+10\ge10\)
\(\Rightarrow\)A\(\ge13\)
dấu "=" xảy ra khi (x-2y)(x-2y-2)=0
\(\left[{}\begin{matrix}x-2y=0\\x-2y-2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}2y=x\\x-2y=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0;y=0\\x=2;y=1\end{matrix}\right.\)
vậy GTNN của M=10 khi x=0; y=0
x=2;y=1