\(\dfrac{1}{\sqrt{x+3}}\) xác định khi \(x+3>0\)
=>x>-3
\(\dfrac{1}{\sqrt{x+3}}\) xác định khi \(x+3>0\)
=>x>-3
Tất cả các giá trị của x để biểu thức P được xác định \(P=\sqrt{x^2-4x+3}\)
Trên mặt phẳng tọa độ Ory, cho parabol (P):y=r? và đường thẳng (d): y = (m + 2)x - (m+2)x-2m. a) Xác định tọa độ giao điểm (d) và (P) khi m = -3. b) Tìm tất cả giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ lần lượt là
( căn x trên ( căn x - 1 ) ) - ( 1 trên (x- căn x))
a. Tìm điều kiện x để P được xác định
b. Rút gọn P
c. Tìm tất cả các số thực x sao cho x> 1/3 đồng thơi phải nhận giá trị nguyên
Cho biểu thức: \(A=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{\sqrt{x}}\)
a) Tìm điều kiện xác định và rút gọn A.
b) Tìm tất cả các giá trị của x để \(A>\frac{1}{2}\),
c) Tìm tất cả giá trị của x để \(B=\frac{7}{3}A\)đạt giá trị nguyên.
20k vittel or mobile cho bạn nào làm nhanh và chính xác trc 1h.
\(Q=\left(\frac{1}{\sqrt{x}-3}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right)\)
a. tìm các giá trị x để Q xác định
b. rút gọn q
c. tìm tất cả giá trị x để Q< 0
cho tập hợp A = {x thuộc R / ( 14)/ ( 3 căn x + ^ thuộc Z }
hãy xác định tập A bằng cách liệt kê các phần tử
tìm tất cả các tập hợp con của A
Bài 1: Cho biểu thức
A=(\(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\) ) :\(\frac{\sqrt{x}}{\sqrt{x}-2}\)
a. Tìm điều kiện xác định và rút gọn A
b.Tìm tất cả các giá trị của x để A >\(\frac{1}{2}\)
c.Tìm tất cả các giá trị của x để B=\(\frac{7}{3}A\)
Cho biểu thức P= \(\frac{\sqrt{x}+1}{\sqrt{x}}(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\)
a/ Tìm ĐK của x để P xác định
b/ Rút gọn P
c/ Tìm x để P>0
d/ Tìm tất cả các số nguyên x để P nhận giá trị nguyên
e/ Tìm giá trị của P khi x= \(\frac{13}{5-2\sqrt{3}}\)
Câu 1:Cho hàm số y= 4xmũ2 -4mx + mmũ2 – 2m . X xác định tất cả các giá trị của m để giá trị nhỏ nhất của hàm số trên đoạn [-2,0] bằng 3.
Câu 2: Cho parabol (P) : y= xmũ2 -4x =m (m là tham số) . Tìm tất cả các giá trị của m sao cho (P) cắt trục Ox tại điểm phân biệt A,B với OA = 3OB
1. Tìm các nghiệm nguyên dương của phương trình: 3(xy+yz+zx) = 4xyz
2. Xác định tất cả các cặp (x;y) nguyên dương thỏa mãn phương trình: (x+1)^4 - (x-1)^4 = y^3
3. Tìm nghiệm nguyên dương của phương trình: x^2y + y^2z + z^2x = 3xyz
P/s: Tôi có bài giải rồi, ai có ý kiến khác tôi thì ý kiến nhé