1. Có x ∈ {4} thỏa mãn được A và B cùng trong ngoặc
Cho M = \(\dfrac{2x-1}{x+2}\) ; N = \(\dfrac{x^2-2x+3}{x-2}\)
Tìm x:
a) \(\dfrac{5}{4}+\left(2x-\dfrac{1}{2}\right)=\dfrac{5}{6}\)
b) \(\dfrac{3}{2}-\left(x+\dfrac{1}{4}\right)=\dfrac{5}{8}\)
c) \(\dfrac{x}{3}=\dfrac{12}{x}\)
Giúp với!
Tìm giá trị nhỏ nhất của biểu thức sau :
\(A=|2x-\dfrac{1}{3}|-1\dfrac{3}{4}\)
\(B=\dfrac{1}{3}|x-2|+|3-\dfrac{1}{2}y|+4\)
Giúp mk với ! Mk cần gấp lắm !!!
\(\dfrac{-x}{2}\)+\(\dfrac{2x}{3}\)+\(\dfrac{x+1}{4}\)+\(\dfrac{2x+1}{6}\)= \(\dfrac{8}{3}\)
Giúp mình với nha
Tìm x,y ∈ Z thỏa mãn : \(\dfrac{2x}{3}\)-\(\dfrac{2}{y}\)=\(\dfrac{1}{3}\)
Tìm x:
a) \(\dfrac{x}{4}=\dfrac{4}{x}\)
b) \(\dfrac{x+7}{15}=-\dfrac{24}{36}\)
c) \(\dfrac{x+1}{8}=\dfrac{2}{x+1}\)
d) \(\dfrac{2x-1}{\left(-3\right)^2}=\dfrac{\left(-3\right)^2}{2x-1}\)
\(A=\dfrac{3}{x+2} B=\dfrac{-11}{2x-3} C=\dfrac{x+3}{x+1}D=\dfrac{2x+10}{x+3}\)
giúp mik với mn nếu ai trả lời đc thì cho mik cảm ơn nha
Mik đg cần
a) \(\dfrac{12}{16}\) = \(\dfrac{-x}{4}\) = \(\dfrac{21}{y}\) = \(\dfrac{z}{80}\)
b) \(\dfrac{1}{3}\) x + \(\dfrac{2}{5}\) ( x - 1 ) = 0
c) ( 2x - 3 )( 6 - 2x ) = 0
d) \(\dfrac{-2}{3}\) - \(\dfrac{1}{3}\) ( 2x - 5 ) = \(\dfrac{3}{2}\)
e) 2 |\(\dfrac{1}{2}\) x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{4}\)
Tìm x biết:
\(a,3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\)
\(b,\dfrac{1}{3}+\dfrac{2}{3}:x=-7\)
\(c,\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(d,\left(2x-3\right)\left(6-2x\right)=0\)
\(e,x:\dfrac{3}{4}+\dfrac{1}{4}=-\dfrac{2}{3}\)
\(f,\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)
\(g,2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\)
\(h,\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(i,\left(-0,6x-\dfrac{1}{2}\right).\dfrac{3}{4}-\left(-1\right)=\dfrac{1}{3}\)
\(j,\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(k,\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(l,\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(m,3\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\)
\(n,60\%x+\dfrac{2}{3}x=\dfrac{1}{3}.6\dfrac{1}{3}\)
\(p,-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(q,3\left(x-\dfrac{1}{2}\right)-5\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\)