Bài 2:
\(A=3x^2-8x+1\)
\(=3\left(x^2-\dfrac{8}{3}x+\dfrac{1}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{13}{9}\right)\)
\(=3\left(x-\dfrac{4}{3}\right)^2-\dfrac{13}{3}\ge-\dfrac{13}{3}\)
Dấu '=' xảy ra khi x=4/3
Bài 2:
\(A=3x^2-8x+1\)
\(=3\left(x^2-\dfrac{8}{3}x+\dfrac{1}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{13}{9}\right)\)
\(=3\left(x-\dfrac{4}{3}\right)^2-\dfrac{13}{3}\ge-\dfrac{13}{3}\)
Dấu '=' xảy ra khi x=4/3
Mọi người ơi , giúp em 2 bài này nha! Theo hằng đẳng thức ạ! ( dấu "^" là mũ , " - " là trừ , dấu "." là nhân còn mấy cái sô với chữ em viết liền nhau là nó nhân với nhau nha mọi người )
Bài 1
a) cho x^2 = y^2 + z^2 . Chứng minh rằng: ( 5x - 3y + 4z ) . ( 5x - 3y - 4z ) = ( 3x - 5y )^2 ( tất cả mũ 2 nha mn)
b ) cho 10x^2 ( x mũ 2 ) = 10y^2 ( y mũ 2 ) + z^2 . Chứng minh rằng : ( 7x - 3y + 2z ) . ( 7x - 3y - 2z ) = ( 3x - 2y )^2 ( tất cả mũ 2 nha)
c ) Cho x+y = a , x^2 + y^2 =b ; x^3 + y^3 = c. Chứng minh rằng : a^2 - 3ab ( 3 nhân a nhân b nha ) + 2c = 0
Bài 2 : Tìm x:
a) x.(x+4) . ( 4-x ) + ( x-5) . (x^2 + 5x + 25 ) = 3
b) ( x+1)^3 - ( x - 1)^3 - 6.( x-1)^2 = -10 ( âm 10 nha)
Chứng minh rằng nếu:
(x-y)2+(y-z)2+(x-z)2=(x+y-2z)2+(z+x-2y)2+(y+z-2x)2thì x=y=z
3. A) Cho x, y, z khác 0 thỏa mãn: (x-y-z)2= x2+y2+z2
Chứng minh rằng: \(\frac{1}{x^3}-\frac{1}{y^3}-\frac{1}{z^3}\) = \(\frac{3}{xyz}\)
b) Cho x,y,z khác 0 thỏa mãn: (4x-3y+2z)2= 16x2+9y2+4z2.
Chứng minh rằng: \(\frac{1}{64x^3}-\frac{1}{27y^3}+\frac{1}{8z^3}\)=\(-\frac{1}{8xyz}\)
4. a)CMR: (A+B+C)3 - A3-B3-C3 = 3(A+B)(B+C)(C+A)
b) Cho P = (x+y+z)3-x3-y3-z3.
CMR:
-Nếu P =0 Thì(x11+y11)(y+z7)(z2019+x2019)=0
-Nếu x,y, z là các số nguyên cùng tính chẵn lẻ thì P chia hết cho 8, cho 24
Chứng minh rằng nếu:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)thì x=y=z
Cho ba số x,y,z thỏa mãn đồng thời: x2 + 2y +1 = y2 + 2z + 1 = z2 + 2x +1 = 0
Tính giá trị biểu thức: A = x2017 + y2017 + z2017
Bài 1: Chứng minh rằng giá trị các biểu thức sau không phụ thuộc vào biến x.
a) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
b) x(3x2 - x + 5) - (2x3 + 3x - 16) - x(x2 - x + 2)
Bài 2: Chứng minh rằng các biểu thức sau đây bằng 0
a) x(y - z) + y(z - x) + z(x - y)
b) x(y + z -yz) - y(z + x - zx) + z(y - x)
Nhanh giúp mình với, đang cần gấp!!
1)cho 10x^2=10y^2+z^2.CM(7x-3y+2z)(7x-3y-2z)=(3x-7y)^2
2)cho x-y=2.Tính A=2(x^3-y^3)-3(x+y)^2
3)tam giác ABC có 3 cạnh là a,b, c thỏa mãn hệ thức a^3+b^3+c^3=abc. Hỏi tam giác ABC là tam giác gì
Tìm x , y , z \(\in Z^+\) thỏa mãn
x2 + y2 + z2 + 3 < xy + 3y + 2z - 4
Chứng minh các đẳng thức sau :
\(\left(\dfrac{2x+2y-z}{3}\right)^2+\left(\dfrac{2y+2z-x}{3}\right)^2+\left(\dfrac{2z+2x-y}{3}\right)^2=x^2+y^2+z^2\)