Xét tam giác ABC vuông tại A có AD vuông góc với BC
=> AB2B=DC.BC; AC2=DC.BC
tam giác ABD vuông tại D có DF vuông góc với AB =>BD2=BF.AB
Tương tự DC2=CE.AC
Ta có \(\dfrac{AC^2}{AB^2}\)=\(\dfrac{DC.BC}{DB.BC}\)=\(\dfrac{DC}{DB}\)
=> \(\dfrac{AC^4}{AB^4}\)= \(\dfrac{DC^2}{DB^2}\)=\(\dfrac{CE.AC}{BF.AB}\)
=>\(\dfrac{AC^3}{AB^3}\)=\(\dfrac{CE}{BF}\)
2/ gọi E là giao của BH với AC; F là giao của CH với AB
=>BE vuông góc với AC; CF vuông góc với AB
Xét tam giác AC1B có C1F vuông góc với AB =>AC12=AF.AB (1)
Tương tự AB12=AE.AC (2)
C/m tam giác AEB đồng dạng với tam giác AFC (g.g)
=> \(\dfrac{AE}{AF}\)=\(\dfrac{AB}{AC}\) => AE.AC=AF.AB (3)
Từ (1);(2) và (3) => AB1=AC1