1) Cho tam giác ABC cân tại A nội tiếp đường tròn (O;R). Qua A kẻ đường thẳng cắt cạnh BC tại D và cắt (O) tại E.
a) Chứng minh EA là tia phân giác góc BEC.
b) Chứng minh tg AEB đồng dạng với tg ABD và suy ra tích AD. AE không đổi.
giúp tui cái trời ơi
cho tam giác ABC nội tiếp đường tròn (O,R). Phân giác góc BAC cắt BC tại D và cắt đường tròn (O) tại E.Vẽ đường tròn đường kính AE. Đường thẳng qua D vuông góc với AE cắt đường kinhs AE tại F. chứng minh tam giác EFC cân
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho tam giác ABC cân tại A nội tiếp đường tròn (o) Gọi D là một điểm trên BC, tia AD cắt cung BC ở E
a) Chứng minh rằng EA là tia phân giác góc BAC
b) Tam giác AEB đồng dạng tam giác ABD suy ra AE.AD=AB^2
bài 1: Cho tam giác MNP cân tại M có đáy nhỏ hơn cạnh bên. Tam giác nội tiếp (O) bán kính R. Tiếp tuyến tại N và P của đường tròn lần lượt cắt tia MP, MN tại E và D. Hỏi:
a, chứng minh NE bình = EP. EM
b, Chứng minh tứ giác DEPN nội tiếp.
bài 2: Cho (O), lấy A không thuộc đường tròn. Đường thẳng AO giao với (O) tại B, C (AB < AC). Qua A vẽ đường thẳng không đi qua O cắt (O) tại 2 điểm D và E (AD < AE). Đường vuông góc với AB tại A cắt đường thẳng CE tại F.
a, Chứng minh tứ giác ABEF nội tiếp
b, Gọi M là giao điểm thứ 2 của FB với (O). Chứng minh DM vuông góc AC.
c, CE . CF + AD . AE = AC bình
Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại M
a) tam giác MAB là tam giác j?
b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'
c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với BA. Ex cắt By tại N. Chứng minh 3 điểm D,C.N thẳng hàng.
Bài 2: Cho (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của (O) cắt (O') tại D. Tiếp tuyến tại A của (O') cắt (O) tại C. Chứng minh rằng:
a) tam giác ABC đồng dạng với tam giác DBA
b) (AC/AD)^2 ( AC trên AD tất cả mũ 2) = BC/BD( AC trên AD tất cả mũ 2 bằng BC/BD)
c) Gọi E là điểm đối xứng của A qua B. Chứng minh ACED là tứ giác nội tiếp.
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O) có 3 đường cao AD, BE, CF cắt nhau tại H. Tia AD cắt (O) tại K.
a) Chứng minh tam giác BHK cân rồi suy ra BC là trung trực của HK
b) Vẽ đường kính AM của (O). Chứng minh: tam giác ABD đồng dạng tam giác AMC và OA vuông góc EF tại Q
c) Chứng minh AQ.AM=AE.AC và tứ giác QHDM nội tiếp.
Cho tam giác ABC nhọn nội tiếp (O,R), D là điểm thuộc cạnh BC sao cho AD là phân giác góc BAC.đường thẳng qua C và song song với AD cắt trung trực của AC tại E. đường thẳng qua B song song với AD cắt trung trực của AB tại F.
a.CM: tg ABF đồng dạng tg ACE
b. CMR: các đường thẳng BE, CF, AD đồng quy tại 1 điểm, điểm đó gọi là G.
c. đường thẳng đi qua G song song với AE cắt BF tại Q. đường thẳng QE cắt đường tròn ngoại tiếp tg GEC tại P khác E. CMR: các điểm A, P, G, Q, F cùng thuộc 1 đường tròn.
cho tam giác ABC vuông cân tại A cắt tai nội tiếp đường tròn tâm O. Tiếp tuyến tại B với đường tròn (O) CA tại D. Trên cạnh AB lấy điểm E ( E không trùng với A và B). Tia CE cắt đường tròn O tại F và cắt BD tại K. Tia BF cắt CD tại M.
a) chứng minh tam giác MAD đồng dạng với tam giác MFC
b) chứng minh tứ giác AFKD nội tiếp
c) Tia ME cắt BC tại H. Tứ giác MDBH là hình gì?
d) chứng minh AB.EB+CE.CF=BC^2