1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
1) Cho tam giác ABC cân tại A nội tiếp đường tròn (O;R). Qua A kẻ đường thẳng cắt cạnh BC tại D và cắt (O) tại E.
a) Chứng minh EA là tia phân giác góc BEC.
b) Chứng minh tg AEB đồng dạng với tg ABD và suy ra tích AD. AE không đổi.
1) Cho tam giác ABC cân tại A nội tiếp đường tròn (O;R). Qua A kẻ đường thẳng cắt cạnh BC tại D và cắt (O) tại E.
a) Chứng minh EA là tia phân giác góc BEC.
b) Chứng minh tg AEB đồng dạng với tg ABD và suy ra tích AD. AE không đổi.
giúp tui cái trời ơi
Cho tam giác ABC vuông tại A, vẽ đường tròn tâm O đường kính AC. Qua C kẻ tiếp tuyến d với đường tròn tâm O. Kẻ OD vuông góc với BC (D thuộc BC ), đường thẳng OD cắt đường thẳng d tại E và cắt đường thẳng AB tại F. Gọi I là giao điểm của AE và BO
1) Chứng minh AE vuông góc với BO
2) Chứng minh AI.AE =2OD.OF
bài 1: Cho tam giác MNP cân tại M có đáy nhỏ hơn cạnh bên. Tam giác nội tiếp (O) bán kính R. Tiếp tuyến tại N và P của đường tròn lần lượt cắt tia MP, MN tại E và D. Hỏi:
a, chứng minh NE bình = EP. EM
b, Chứng minh tứ giác DEPN nội tiếp.
bài 2: Cho (O), lấy A không thuộc đường tròn. Đường thẳng AO giao với (O) tại B, C (AB < AC). Qua A vẽ đường thẳng không đi qua O cắt (O) tại 2 điểm D và E (AD < AE). Đường vuông góc với AB tại A cắt đường thẳng CE tại F.
a, Chứng minh tứ giác ABEF nội tiếp
b, Gọi M là giao điểm thứ 2 của FB với (O). Chứng minh DM vuông góc AC.
c, CE . CF + AD . AE = AC bình
Cho đường tròn tâm O đường kính AB. Dây cung MN vuông góc với AB tại I( I nằm giữa A và O). Trên tia NM lấy điểm K nằm ngoài đường tròn ( M nằm giữa N và K), AK cắt đường tròn tại C, CB cắt MN tại D. Chứng minh rằng:
a/ Tứ giác ACDI nội tiếp đường tròn. Xác định đường kính và tâm của đường tròn đó.
b/ AB.DI = AC.BD
c/ AD cắt đường tròn tại E. Từ điểm C kẻ đường thẳng vuông góc với AE cắt EI tại F. Chứng minh ECF tam giác cân.
Cho tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên nội tiếp đường tròn tâm O bán kính r .Tiếp tuyến tại B và C của đường tròn tâm O bán kính r cắt nhau tại D.
a) Chứng minh tứ giác ABC nội tiếp được đường tròn
b) Đường thẳng BD và AC cắt nhau tại E Chứng minh EB²= EC×EA
c) Từ m trên cung nhỏ BC vẽ MI vuông góc với BC MH vuông góc với AB MF vuông góc với AC Chứng minh E,H,F thẳng hàng
d) cho góc BAC bằng 30 độ Tính theo r diện tích của tứ giác ABCD