Câu 1: Cho phương trình \(x^2-2\left(m+4\right)x+m^2+8m-9=0\)
(Với m là tham số)
a)Tìm các giá trị nguyên của m để phương trình trên có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(\dfrac{x_1^2+x_2^2-48}{x_1^2+x^2_2}\) nguyên.
cho phương trình \(x^2-2x+m-1=0\), với m là tham số. Tìm các giá trị của m để phương trinh trên có hai nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)
Cho phương trình x2 - (m + 2)x + 3m - 6 = 0 (m là tham số)
Tìm các giá trị m để phương trình có hai nghiệm phân biệt x1,x2 sao cho \(\sqrt{x_1}\) +\(\sqrt{x_2}\) = 2
Cho phương trình (m-1)x-2mx+m+1=0 ( với m là tham số )
a) CM phương trình luôn có hai nghiệm phân biệt \(\forall\)m #1
b) Xác định giá trị của m để phương trình có tích hai nghiệm =5 . Từ đó hãy tính tổng hai nghiệm của phương trình
c) Tìm 1 hệ thức hai nghiệm không phụ thuộc vào m
d) Tìm m để phương trình có hai nghiệm \(x_1;x_2\) thỏa mãn hệ thức\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\)
GIÚP MÌNH VỚI
Cho phương trình bậc hai: x2-2(m-1)x+2m-3=0 với m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt{x_1}\)=2\(\sqrt{x_2}\)
Cho phương trình bậc 2 \(x^2+mx+2m-4=0\)
Gọi x1 , x2 là 2 nghiệm phân biệt của phương trình . Tìm các giá trị tương đương của m để \(A=\frac{x_1.x_2}{x_1+x_2}\)có giá trị nguyên
--------------Help me--------------
cho phương trình \(x^2-3x+m=0\) (1) với m là tham số
a) giải phương trình khi m=1
b)tìm tất cả giá trị của tham số m để phương trình có hai nghiệm phân biệt \(x_1^2\) +\(x_2^2\)=2021
Cho phương trình \(\left(m-1\right)x^2-2mx+m+1=0\)0 với m là tham số
a) CMR: phương trình có 2 nghiệm phân biệt với m #1
b) Xác định giá trị của m để phương trình có tích hai nghiệm bằng 5. Từ đó hãy tính tổng tích của hai nghiệm phương trình đó
c) Tìm một hệ thức giữa hai nghiệm không phụ thuộc vào m
c)Tìm m để phương trình có hai nghiệm \(x_1;x_2\)thỏa mãn hệ thức
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\)
1,Cho biểu thức M =( \(\frac{\sqrt{x}-2}{x-1}\)-\(\frac{\sqrt{x}+2}{x^{ }+2\sqrt{x}+1}\)) : \(\frac{2}{\left(1-x\right)^2}\)
a. Rút gọn M
b. Tìm giá trị lớn nhất của M
2.Cho phương trình x^2-mx+m+3=0 với m là tham số.
a. tìm tất cả giá trị của m để phương trình có hai nghiệm x1, x2 dương phân biệt hoặc trùng nhau. Khi đó giá trị nhỏ nhất của biểu thức:
M=\(\frac{x_1^2}{x_1-1}\)+\(\frac{x_2^2}{x_2-1}\)
b. Chứng minh rằng phương trình có hai nghiệm phân biệt đều lớn hơn 2 khi 6<m<7