Câu 1: \(u_{2019}=2\cdot2019+1=4039\)
2:
\(u_{14}=u_{10}+4d\)
=>\(4d=18-6=12\)
=>d=3
\(u_{10}=u_1+9d\)
=>\(u_1=u_{10}-9d=6-9\cdot3=6-18=-12\)
=>\(u_1+d=-12+3=-9\)
3: \(S_n=483\)
=>\(\dfrac{n\cdot\left[2u_1+\left(n-1\right)\cdot d\right]}{2}=483\)
=>\(\dfrac{n\cdot\left[2\cdot\left(-1\right)+\left(n-1\right)\cdot2\right]}{2}=483\)
=>n(-1+n-1)=483
=>n(n-2)=483
=>\(n^2-2n-483=0\)
=>\(\left[{}\begin{matrix}n=23\left(nhận\right)\\n=-21\left(loại\right)\end{matrix}\right.\)
vậy: CSC có 23 số hạng