1 , Cho a + b + c = 2014 và ( 1 / a + b ) + ( 1 / b+ c ) + ( 1 / c + a ) = 1 / 9 . Tính S = ( a / b + c ) + ( b / c + a ) + ( c / a + b )
2 , Cho z , y , z là các số khác 0 và x^2 = yz , y^2 = xz , z^2 = xy . Chứng minh rằng x = y = z
- Các cậu giúp tớ với Tớ cần gấp lắm ạ Các cậu cứu tớ đi ... híc Ai làm được các cậu giải giúp tớ , tớ camon ng đấy nhiều lắm ấy ạ ...
Đề cậu viết khó nhìn qá :)
Bài 1 :
Ta có :
\(a+b+c=2014\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{9}\)
\(\Leftrightarrow2014\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=2014.\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{2014}{a+b}+\dfrac{2014}{b+c}+\dfrac{2014}{c+a}=\dfrac{2014}{9}\)
Mà \(a+b+c=2014\) nên :
\(\Leftrightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{2014}{9}\)
\(\Leftrightarrow\left(\dfrac{a+b}{a+b}+\dfrac{c}{a+b}\right)+\left(\dfrac{b+c}{b+c}+\dfrac{a}{b+c}\right)+\left(\dfrac{c+a}{c+a}+\dfrac{b}{c+a}\right)=\dfrac{2014}{9}\)
\(\Leftrightarrow3+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}=\dfrac{2014}{9}\)
\(\Leftrightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}=\dfrac{1987}{9}\)
\(\Leftrightarrow S=\dfrac{1987}{9}\)