Cho x,y,z,a,b,c khác 0 và \(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\).Chứng minh rằng \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ac}{y}=\dfrac{c^2-ab}{z}\)
Cho 3 số a, b, c khác 0 và : a(y + z) = b(x + z) =c(z + y) Chứng minh rằng : y - z /a(b - c) = z - x / b(c - a) = x - y / c(a - b)
Bài 1 : Cho các số thực a,b,c khác 0 thỏa mãn \(a+b+c=2;a^2+b^2+c^2=4\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Chứng minh rằng : xy+yz+zx=0
Bài 2 : Cho x khác -1;0;1 thỏa mãn \(\dfrac{a}{x-1}=\dfrac{b}{x}=\dfrac{c}{x+1}\) Chứng minh rằng : \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)
Bài 3 : Cho các số thực a,b,c khác 0 thỏa mãn \(\dfrac{x}{a+2b-c}=\dfrac{y}{2a+b+c}=\dfrac{z}{4b+c-4a}\) . Chứng minh rằng : \(\dfrac{a}{x+2y-z}=\dfrac{b}{2x+b+c}=\dfrac{c}{4y+z-4x}\)
GIÚP MÌNH ĐI CHIỀU 1 GIỜ ĐI HOK RỒI !!!
1 , Cho a + b + c = 2014 và ( 1 / a + b ) + ( 1 / b+ c ) + ( 1 / c + a ) = 1 / 9 . Tính S = ( a / b + c ) + ( b / c + a ) + ( c / a + b )
2 , Cho z , y , z là các số khác 0 và x^2 = yz , y^2 = xz , z^2 = xy . Chứng minh rằng x = y = z
- Các cậu giúp tớ với Tớ cần gấp lắm ạ Các cậu cứu tớ đi ... híc Ai làm được các cậu giải giúp tớ , tớ camon ng đấy nhiều lắm ấy ạ ...
Cho a,b,c,x,y,z khác 0 thõa mãn x/a = y/b=z/c . Chứng minh rằng : a^2/x + b^2/y + c^2/z = ( a+ b + c ) ^2 /x+Y+Z
Câu 1: Cho x, y, z là các số ≠ 0 và x+\(\dfrac{1}{y}\) =y+\(\dfrac{1}{z}\) =z+\(\dfrac{1}{x}\) . Chứng minh rằng
Hoặc x=y=z, hoặc x2y2z2=1.
Câu 2: Cho abc ≠ 0 và a+b+c ≠ 0. Tìm x, biết: \(\dfrac{a+b-x}{c}\) +\(\dfrac{a+c-x}{b}\) +\(\dfrac{b+c-x}{a}\) +\(\dfrac{4x}{a+b+c}\) =1
Cho x,y,z,a,b,c khác 0 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).Chứng minh rằng
a) \(\dfrac{a^2}{x}=\dfrac{b^2}{y}=\dfrac{c^2}{z}=\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
b) \(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)}=\dfrac{1}{a^2+b^2+c^2}\)
1, x/y = 9/7;y/z = 7/9 va x-y+z=-15
b.6/11 x= 9/2 y=18/5z va -x+y+z=3
c,x/5=y/7=z/3 va x^2+y^2-z^2=585io
d,cho x/y/z =5/4/3 tinh P=x+2y-3z/x-2y+3z
e,cho 2a+b+c/a = a+2b+c/b = a+b+2c/c tinh S=a+b/c + b+c/a + c+a/b
Tìm các số x,y,z khác 0 biết: \(\frac{xy}{ay+bx}=\frac{yz}{cy+bz}=\frac{xz}{az+cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(a,b,c\ne0\right)\)