a: \(=\left(1+\sqrt{x}+x+\sqrt{x}\right)\cdot\left(\dfrac{1}{1+\sqrt{x}}\right)^2\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)^2}=1\)
b: \(\sqrt{2012}-\sqrt{2011}=\dfrac{1}{\sqrt{2012}+\sqrt{2011}}\)
\(\sqrt{2011}-\sqrt{2010}=\dfrac{1}{\sqrt{2011}+\sqrt{2010}}\)
mà 2012>2010
nên căn 2012-căn 2011<căn 2011-căn 2010