\(1,\Rightarrow4^{x+1}=4^{3x}\\ \Rightarrow x+1=3x\\ \Rightarrow2x=1\\ \Rightarrow x=\dfrac{1}{2}\\ 2,\Rightarrow5x-2x=10+10x\\ \Rightarrow7x=-10\\ \Rightarrow x=-\dfrac{10}{7}\)
1. 4x + 1 = 64x
<=> 4x + 1 = 43x
<=> x + 1 = 3x
<=> 1 = 2x
<=> \(x=\dfrac{1}{2}\)
2. \(\dfrac{x}{2}-\dfrac{x}{5}=1+x\)
<=> \(\dfrac{5x}{10}-\dfrac{2x}{10}=\dfrac{10}{10}+\dfrac{10x}{10}\)
<=> 5x - 2x = 10 + 10x
<=> 5x - 2x - 10x = 10
<=> -7x = 10
<=> \(x=\dfrac{-10}{7}\)