Đặt \(A=1+3^2+3^4+...+3^{100}\)
\(9A=3^2+3^4+3^6+...+3^{102}\)
\(9A-A=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(8A=3^{102}-1\)
\(A=\frac{3^{102}-1}{8}\)
Vậy \(A=\frac{3^{102}-1}{8}\)
Chúc bạn học tốt ~
Đặt A = 1 + 3^2 + 3^4 + 3^6 + ....+ 3^100
3^2A = 3^2 + 3^4 + 3^6 + ..+3^102
8A=3^2A - A = 3102 - 1
A = 3102 - 1/8
=. A = 3102 - 1 /8