`= 3/4 . 8/9 . 15/16. ... . 143/144`
`= (1.2.3...12)/(2.3.4....12) . (3.4.....12.13)/(2.3....11.12)`
`= 1/12 . 13/2 = 13/24`
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)*...*(1-1/12)(1+1/12)
=1/2*2/3*...*11/12*3/2*4/3*...*13/12
=1/12*13/2=13/24
`= 3/4 . 8/9 . 15/16. ... . 143/144`
`= (1.2.3...12)/(2.3.4....12) . (3.4.....12.13)/(2.3....11.12)`
`= 1/12 . 13/2 = 13/24`
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)*...*(1-1/12)(1+1/12)
=1/2*2/3*...*11/12*3/2*4/3*...*13/12
=1/12*13/2=13/24
((4/9)^2*(-9/16)^1*(-1)^19)/((4/25)^2*(-25/144)^2*(-49/144)^2)
S= (1+1/4).(1+1/9).(1+1/16).(1+1/25). ... .(1+1/121).(1+1/144)
cho P=1/4+1/9+1/16+1/25+.....+1/121+1/144.Chứng tỏ rằng P <2/3
1/4+1/16+1/1/36+1/64+1/140+1/144+1/196<1/2
CMR : 1/4 + 1/16 + 1/36 + 1/64 + 1/100 + 1/144 + ... + 1/10000 < 1/2
CMR:
(1/4+1/16+1/36+1/68+1/1001/144+1/196)<1/5+1/4+1/20
chứng minh rằng a 1/4 +1/16+1/36+1/64+1/100+1/144 +1/196+......+1/10000 <1/2
CM:1/4+1/16+1/36+1/64+1/100+1/144+1/196+......+1/1000<1/2
Chứng minh rằng:A=(1/4)+(1/16)+(1/64)+(1/100)+(1/144)+(1/196)+(1/256)+(1/324)<1/2