Đặt tổng trên = A
\(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{4096}+\frac{1}{8192}\)
\(A.2=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}+\frac{1}{4096}\)
\(A.2-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}+\frac{1}{4096}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{4096}+\frac{1}{8192}\right)\)
\(A=2-\frac{1}{8192}=\frac{16383}{8192}\)
Đặt A = 1 + 1/2 + 1/4 + 1/8 + ... + 1/4096 + 1/8192
2A = 2 + 1 + 1/2 + 1/4 + ... + 1/2048 + 1/4096
2A - A = (2 + 1 + 1/2 + 1/4 + ... + 1/2048 + 1/4096) - (1 + 1/2 + 1/4 + 1/8 +... + 1/4096 + 1/8192)
A = 2 - 1/8192
A = 16383/8192
\(\text{Đ}\text{ặt}:A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{4096}+\frac{1}{8192}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}+\frac{1}{4096}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}+\frac{1}{4096}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{4096}+\frac{1}{8192}\right)\)
\(A=2-\frac{1}{8192}=\frac{16383}{8192}\)