a/
$x+(x+1)+(x+2)+...+(x+2010)=2029099$
$\underbrace{(x+x+...+x)}_{2011}+(1+2+3+...+2010)=2029099$
$x\times 2011+2010\times 2011:2=2029099$
$x\times 2011+2021055=2029099$
$x\times 2011=8044$
$x=8044:2011=4$
b/
$2+4+6+8+...+2x=210$
Số số hạng của tổng: $(2x-2):2+1=x$
Vậy:
$2+4+6+8....+2x=210$
$\Rightarrow (2x+2)\times x:2=210$
$(x+1)\times x=210=14\times 15$
$\Rightarrow x=14$
c/
$(x+1)+(x+2)+(x+3)+...+(x+100)=205550$
$\underbrace{(x+x+....+x)}_{100}+(1+2+3...+100)=205550$
$x\times 100+100\times 101:2=205550$
$x\times 100+5050=205550$
$x\times 100=200500$
$x=200500:100$
$x=2005$
d/
$x+(x+1)+(x+2)+....+(x+30)=1240$
$\underbrace{(x+x+...+x)}_{31}+(1+2+...+30)=1240$
$x\times 31+30\times 31:2=1240$
$x\times 31+465=1240$
$x\times 31=775$
$x=775:31$
$x=25$