\(a,\dfrac{1}{3}+x=\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{13}{6}\\ b,\dfrac{12}{9}-x=\dfrac{1}{5}\\ \Leftrightarrow x=\dfrac{17}{15}\\ c,\dfrac{3}{5}+x=\dfrac{9}{15}\\ \Leftrightarrow x=0\)
\(d,\dfrac{2}{3}+\dfrac{1}{3}x=1\\ \Leftrightarrow\dfrac{1}{3}x=\dfrac{1}{3}\\ \Leftrightarrow x=1\\ e,\dfrac{4}{5}-x+\dfrac{1}{2}=\dfrac{1}{3}\\ \Leftrightarrow x=\dfrac{4}{5}\\ g,\dfrac{2}{3}\left(x+\dfrac{1}{8}\right)=3\\ \Leftrightarrow x+\dfrac{1}{8}=\dfrac{9}{2}\\ \Leftrightarrow x=\dfrac{35}{8}\\ h,\left(x-\dfrac{1}{5}\right)\cdot\dfrac{1}{3}=2\\ \Leftrightarrow x-\dfrac{1}{5}=6\\ \Leftrightarrow x=\dfrac{29}{5}\)