a) A có gtri nguyên \(\Rightarrow\) 2n2 -3n +1 \(⋮\) n-2
Ta có:
\(2n^2 - 3n + 1 = (n-2)(2n+1) + 5\)
\( n-2 ( 2n^2 - 3n + 1\)\( )\) \(\Leftrightarrow\) n-2 \(\in\) [ 5]
\(n-2\) \(\in\) \({ 1;5 }\)
Vậy n=3; n=7
a) A có gtri nguyên ⇒⇒ 2n2 -3n +1 ⋮⋮ n-2
Ta có:
2n2−3n+1=(n−2)(2n+1)+52�2−3�+1=(�−2)(2�+1)+5
n−2(2n2−3n+1�−2(2�2−3�+1)) ⇔⇔ n-2 ∈∈ [ 5]
n−2�−2 ∈∈ 1;51;5
Vậy n=3; n=7