Đặt \(\sqrt{x^3+1}=t\Rightarrow x^3=t^2-1\Rightarrow3x^2dx=2tdt\Rightarrow x^2dx=\dfrac{2}{3}tdt\)
\(\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=2\Rightarrow t=3\end{matrix}\right.\)
\(I=\dfrac{2}{3}\int\limits^3_1t.tdt=\dfrac{2}{3}\int\limits^3_1t^2dt=\dfrac{2}{9}t^3|^3_1=\dfrac{52}{9}\)



