\(\dfrac{-3}{1\cdot2}+\dfrac{-3}{2\cdot3}+...+\dfrac{-3}{97\cdot98}+\dfrac{-3}{98\cdot99}\)
\(=-3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{97\cdot98}+\dfrac{1}{98\cdot99}\right)\)
\(=-3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=-3\left(1-\dfrac{1}{99}\right)=-3\cdot\dfrac{98}{99}=-\dfrac{98}{33}\)