\(A=\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{x+z}\)
\(A=3-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)
Mà : \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
\(\Rightarrow A< 2\left(1\right)\)
Mặt khác : \(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
Mà : \(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
\(\Rightarrow A>1\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow1< A< 2\Rightarrow\notin\)Số nguyên