\(\int\dfrac{1}{\sqrt[5]{x}}dx=\int x^{-\dfrac{1}{5}}dx=\dfrac{5}{4}x^{\dfrac{4}{5}}+C=\dfrac{5}{4\sqrt[5]{x^4}}+C\)
\(\int\dfrac{1}{\sqrt[9]{x^3}}dx=\int x^{-\dfrac{1}{3}}dx=\dfrac{3}{2}x^{\dfrac{2}{3}}+C=\dfrac{3}{2\sqrt[3]{x^2}}+C\)
\(\int\dfrac{1}{\sqrt[]{x}}dx=\dfrac{\sqrt[]{x}}{2}+C\)
\(\int\dfrac{x^2-x+1}{\sqrt[]{x}}dx=\int\left(x^{\dfrac{3}{2}}-x^{\dfrac{1}{2}}+\dfrac{1}{\sqrt[]{x}}\right)dx=\dfrac{2}{5}\sqrt[]{x^5}-\dfrac{2}{3}\sqrt[]{x^3}+\dfrac{\sqrt[]{x}}{2}+C\)