Không mất tính tổng quát, giả sử \(x\le y\le z\)
Do \(xyz=1\)
\(x+y+z>1\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=xy+xz+yz\)
\(\Rightarrow x+y+z-\left(xy+xz+yz\right)>0\)
Xét:
\(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x-1\right)\left(yz-y-z+1\right)=xyz-xy-xz+x-yz+y+z-1\)
\(=x+y+z-\left(xy+xz+yz\right)>0\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)>0\)
Do \(x\le y\le z\) ta chỉ có 2 trường hợp sau
TH1: \(\left\{{}\begin{matrix}x-1>0\\y-1>0\\z-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\y>1\\z>1\end{matrix}\right.\) \(\Rightarrow xyz>1\) (mâu thuẫn giả thiết)
TH2: \(\left\{{}\begin{matrix}x-1< 0\\y-1< 0\\z-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< 1\\y< 1\\z>1\end{matrix}\right.\)
Vậy trong 3 số có đúng 1 số lớn hơn 1